Атомные апл. Подводные лодки. Основные ттх пларб пр.941



АПЛ пр. 971 (шифр «Барс») разработана в СПМБМ «Малахит» под руководством Г.Н. Чернышова. Относится к ПЛА третьего поколения и является в полном смысле этого слова многоцелевой. Она предназначена для поиска, обнаружения и слежения за ПЛАРБ и АУГ противника, их уничтожения с началом боевых действий, а также нанесения ударов по береговым объектам. При необходимости лодка может нести мины.

Атомная подводная лодка К-335 «Гепард» — видео

Первоначально АПЛ пр. 971 рассматривалась как «стальной» аналог титановой атомной подводной лодки пр. 945, предназначавшийся для увеличения темпов постройки ПЛА третьего поколения. Однако СПМБМ «Малахит», имея большой опыт проектирования многоцелевых лодок, на базе вооружения, механизмов и оборудования, созданных для пр. 945, разработало, по-существу, новый корабль третьего поколения. Самые малошумные отечественные АПЛ По мнению специалистов, по уровню физических полей сопоставимы с такими кораблями, как АПЛ ВМС США Seawolf.
АПЛ пр. 971 является двухкорпусной и имеет «лимузинное» ограждение выдвижных устройств, а также высокое кормовое оперение, на котором расположен обтекатель для буксируемой антенны ГАК. Прочный корпус выполнен из высокопрочной стали с высоким пределом текучести (100 кгс/мм2) и делится прочными переборками на шесть отсеков.


Все основное оборудование и боевые посты АПЛ пр. 971 размещены на амортизаторах в зональных блоках, представляющих собой пространственные каркасные конструкции с палубами. Зональные блоки изолированы от корпуса лодки резинокордными пневматическими амортизаторами. Благодаря использованию зональных блоков удалось существенно уменьшить уровень акустического поля, обезопасить экипаж и оборудование от динамических нагрузок, а также рационализировать технологию постройки корабля. В частности, монтаж оборудования и систем осуществлялся в цехе в зональном блоке, который затем заводился в обечайку отсека. Легкий корпус и наружная поверхность прочного корпуса облицованы единым резиновым противогидролокационным и шумопоглощающим покрытием.
Корабль имеет традиционное двухрядное расположение ТА. В носовом отсеке расположены стеллажи для хранения боезапаса с устройствами продольной, поперечной подач» и УБЗ. Под ТА находится выгородка с основной антенной ГАК. В ограждении рубки и выдвижных устройств размещаются некоторые из антенн ГАК и ВСК на весь экипаж.


Легкому корпусу приданы формы, оптимальные для подводного хода. Все отверстия и вырезы на нем закрываются обтекателями. На ПЛА пр. 97/ удалось реализовать комплексную автоматизацию боевых и технических средств, сосредоточить управление кораблем, его оружием и вооружением в ГКП. Все это позволило сократить экипаж до 73 человек. Начиная с К-263, на лодках пр. 97/ устанавливается СОКС, а с К-391- в надстройке ПУ для запуска средств комплекса гидроакустического противодействия, аварийная система порохового продувания ЦГБ (пороховые генераторы) и аварийные силовые сети.
Одновременно с постройкой кораблей данного типа осуществляется программа их модернизации, направленная на совершенствование акустических характеристик и расширение боевых возможностей. В частности, К-157 и К-335 при сохранении прежних обводов имеют вставку миной несколько метров для установки нового оборудования.
Первоначально предполагалось построить 20 ПЛА пр. 971. Зав. № 520 и зав. № 521, заложенные соответственно в 1990 и 1991 гт. на ССЗ им. Ленинского комсомола, 18.03.1992 г. исключили из списков флота. На этот момент они имели техническую готовность соответственно 25 и 12%. Задел оборудования и механизмов продолжает сохраняться на заводе-строителе.

По состоянию на декабрь 2001 г. в составе флота находились 13 ПЛА пр. 971.

Атомная подводная лодка К-480 «Барс» (зав. № 821, с 24.07.1991 г., с 13.10.1997 г. «Ак-Барс» СМП (г. Северодвинск): 22.02.1985 г.; 16.04.1988 г.; 31.12.1988 г. Входила в состав СФ и несла боевую службу в Атлантическом океане и Средиземном море. 06.04.1990 г. лодка совершила глубоководное погружение на предельную глубину. В 1998 г. ее исключили из боевого состава флота, передали ОРВИ на долговременное хранение и в пос. Гаджиево поставили на отстой.


Атомная подводная лодка К-317 «Пантера» (зав. № 822, с 10.10.1990). СМП (г.Северодвинск): 06.11.1986 г.; 21.05.1990 г.; 30.12.1990 г. Входит в состав СФ. В сентябре 1999 г. на СМП поставлена в средний ремонт.


К-401 «Волк» (зав. № 831, с 26.07.1991 г). СМП (г. Северодвинск): 14.11.1987 г.; 11.06.1991 г.; 29.12.1991 г. Входит в состав СФ. Выполнила две автономные боевые службы. С декабря 1995 г. по февраль 1996 г. в Средиземном море лодка осуществляла дальнее противолодочное прикрытие авианосной многоцелевой группы во главе с ТАВКР Адмирал флота Советского Союза Кузнецов

К-328 «Леопард» (зав. № 832, с 24.01.1991 г). СМП (г. Северодвинск): 26.10.1988 г.;
28.06.1992г.; 15.12.1992 г. Входит в состав СФ Выполнила четыре автономные боевые службы

К-154 «Тигр» (зав. № 833, с 24.07.1991 г). СМП (г. Северодвинск): 10.09.1989 г.; 26.06.1993 г.; 29.12.1993 г. Входит в состав СФ Выполнила две автономные боевые службы С 1998 по 2002 г. на СМП прошла поддерживающий ремонт.

К-157 «Вепрь» (зав. № 834, с 06.04.1993 г). СМП (г. Северодвинск): 13.07.1990 г.; 10.12.1994 г.; 25.11.1995 г. Входит в состав СФ Выполнила одну автономную боевую службу и одну поисковую операцию.

Атомная подводная лодка К-335 «Гепард» (зав. № 835, с 22.02.1993 г). СМП (г. Северодвинск):23.09.1991 г.; 17.09.1999 г.; 05.12.2001 г. Входит в состав СФ.


К-337 «Кугуар» (зав. № 836, с 25.01.1994 г). СМП (г. Северодвинск): 18.08.1992 г.; Из-за отсутствия финансирования 22.01.1998 г. постройка корабля была приостановлена. Он находится на консервации в одном из цехов СМП. Корпусные конструкции, механизмы и оборудование К-337 предполагается использовать при постройке АПКР пр. 955 (шифр «Борей»).

К-333 «Рысь» (зав. №. 837, с 07.02.1995 г). СМП (г. Северодвинск): 31.08.1993 г. Из-за отсутствия финансирования 06.10.1997 г. постройка корабля была приостановлена. Он находится на консервации в одном из цехов СМП. Корпусные конструкции, механизмы и оборудование К-333 предполагается использовать при постройке АПКР пр. 955 (шифр «Борей»).

К-284 «Акула» (зав. № 501, с 13.04.1993 г). ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 06.11.1983 г.; 16.06.1984 г.; 30.12.1984 г. Головной корабль пр 971 Входил в состав ТОФ. В 2001 г. был исключен из боевого состава флота и передан ОРВИ на долговременное хранение.

К-263 «Дельфин» (зав. № 502, с 13.04.1993 г). ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 09.05.1985 г.; 28.05.1986 г.; 30.12.1987 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-322 «Кашалот» (зав. № 513, с 13.04.1993 г. ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 05.09.1986 г.; 18.07.1987 г.; 30.12.1988 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-391 «Кит», «Братск» с 01.09.1997 г. ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 23.02.1988 г.; 14.04.1989 г.; 29.12.1989 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-331 «Нарвал» (зав. № 515, с 13.04.1993). ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 28.12.1989 г.; 23.06.1990 г.; 31.12.1990 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

К-419 «Морж», «Кузбасс» с 29.01.1998 . ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 28.07.1991 г.; 18.05.1992 г.; 31.12.1992 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.

Атомная подводная лодка К-295 «Дракон», «Самара» с 30.08.1999. ССЗ им. Ленинского комсомола (г. Комсомольск-на-Амуре): 07.11.1993 г.; 05.08.1994 г; 28.07.1995 г. Входит в состав ТОФ и несет боевую службу в Тихом океане.


Атомная подводная лодка К-152 «Нерпа». «Чакра» (INS Chakra) с 23 января 2012 года, когда официально передана в лизинг в ВМС Индии


Тактико-технические характеристики АПЛ проекта 971 «Щука-Б»

Водоизмещение, т:
- надводное ……………………………………………………………….8 140
- подводное ……………………………………………………………… 10 500
Длина наибольшая, м ……………………………………………………….. 110.3
Ширина корпуса наибольшая, м ………………………………………………… 13,6
Осадка средняя, м …………………………………………………………… 9,68
Архитектурно-конструктивный тип ………………двухкорпусный
Глубина погружения, м:
- рабочая……………………………………………………………………. 480
- предельная…………………………………………………………………. 600
Автономность по запасам провизии, сут…………………………………………….100
Экипаж, чел…………………………………………………………………….73
Энергетическая установка:
Главные механизмы.
- тип………………………………………………………………………….АЭУ
- ППУ:
— марка………………………………………………………..ОК-9ВМ или ОК-650М.01
- количество х тип ЯР………………………………………………………..1 х ВВР
- тепловая мощность ЯР, МВт……………………………………………………190
— ПТУ:
- тип………………………………………………………………….блочная
- количество х мощность ГТЗА, л. с …………………………………………1 х 50 000
- количество х мощность АТГ, кВт…………………………………………….2 х 3 200
— количество х тип движителей ……………………………….. 1 х малошумный ВФШ
Резервные источники энергии и средства движения
- количество х мощность ДГ, кВт……………………………………………1 х 800
- аккумуляторная установка:
- тип АБ…………………………………………………………свинцово-кислотная
- количество х тип РСД ……………………………………………..2 х ВПК
- привод ВПК х мощность, кВт……………………………………………..ЭД х 300
Скорость хода наибольшая, уз:
— надводная………………………………………………………………..10
- подводная………………………………………………………………..33
Вооружение:
Ракетное:
- тип ракетного комплекса………………………………………………….«Гранат»
— тип КРСН………………………………………………………………РК-55
- вид старта………………………………………………..подводный, из 533-мм ТА
- тип ПЗРК……………………………………………………………. «Стрела-ЗМ»
- количество контейнеров для хранения ЗР…………………………………3
- боекомплект ЗР……………………………………………………………….18
Торпедное.
— количество х калибр ТА, мм……………………………………………4 х 650
- боезапас (тип) торпед…………………………………..12 (торпеды 65-76 или ПЛУР
…………………………………………………………..86Р и 88Р ПАРК «Ветер»)
- количество х калибр ТА, мм …………………………………………..4 х 533
— боезапас (тип) торпед и ПЛУР….28 (торпеды УСЭТ-80 или ПЛУР 83Р и 84Р ПАРК «Водопад», или М5 ПАРК «Шквал»)
- система подготовки ТА ………………………………………… «Гринда»
Радиоэлектронное:
- БИУС ………………………………………………………..«Омнибус»
- НК……………………………………………………………..«Симфония»
- КСС……………………………………………………………..«Молния-МЦ»
- система СС…………………………………………………..«Цунами-БМ»
— ГАК……………………………….«Скат-3» (МГК-540)

Атомные подлодки и прочие суда с ядерными энергоустановками используют радиоактивное топливо - главным образом уран - для превращения воды в пар. Полученный пар вращает турбогенераторы, а те производят электроэнергию для движения судна и питания различного бортового оборудования.

Радиоактивные материалы, подобные урану, выделяют тепловую энергию в процессе ядерного распада, когда неустойчивое ядро атома расщепляется на две части. При этом выделяется огромное количество энергии. На атомной подлодке такой процесс осуществляется в толстостенном реакторе, который непрерывно охлаждается проточной водой, чтобы избежать перегрева, а то и расплавления стенок. Ядерное топливо пользуется особой популярностью у военных на подлодках и авианосцах благодаря своей необычайной эффективности. На одном куске урана размером с мяч для гольфа подлодка может семь раз обогнуть земной шар. Однако ядерная энергия таит в себе опасность не только для экипажа, который может пострадать, если на борту произойдет радиоактивный выброс. В этой энергии заложена потенциальная угроза всей жизни в море, которая может быть отравлена радиоактивными отходами.

Принципиальная схема машинного отсека с ядерным реактором

В типичном двигателе с ядерным реактором (слева) охлажденная вода под давлением попадает внутрь корпуса реактора, содержащего ядерное топливо. Нагретая вода выходит из реактора и используется для превращения другой воды в пар, а затем, остывая, вновь возвращается в реактор. Пар вращает лопасти турбинного двигателя. Редуктор переводит быстрое вращение вала турбины в более медленное вращение вала электродвигателя. Вал электродвигателя при помощи механизма сцепления соединяется с гребным валом. Кроме того, что электродвигатель передает вращение гребному валу, он вырабатывает электроэнергию, которая запасасется в бортовых аккумуляторах.

Ядерная реакция

В полости реактора атомное ядро, состоящее из протонов и нейтронов, подвергается удару свободного нейтрона (рисунок ниже). От удара ядро расщепляется, и при этом, в частности, освобождаются нейтроны, которые бомбардируют другие атомы. Так возникает цепная реакция деления ядер. При этом освобождается огромное количество тепловой энергии, то есть тепла.

Атомная подлодка курсирует вдоль побережья в надводном положении. Таким кораблям надо пополнять топливо лишь один раз в два-три года.

Группа управления в боевой рубке наблюдает за прилегающей акваторией в перископ. Радиолокатор, гидролокатор, средства радиосвязи и фотокамеры со сканирующей системой также помогают вождению этого судна.

Человек издревле мечтал покорить воздух и море. По волнам поверхности вод люди плавали с глубокой древности: викинги, флот Гомера, финикийцы, полинезийцы, аборигены острова Пасха. По мнению современных ученых, последние осуществляли экспедиции, не превзойдённые по длине и продолжительности через почти тысячу лет.

Море покорялось человеку, а подводный океан ждал. Но для появления подводных лодок нужен был определенный уровень развития человечества.

Подводные лодки от античности до наших дней

Античные авторы говорят о подводных работах, как о чем-то само собой разумеющемся. Об этом свидетельствует знаменитое сообщение Аристотеля о… слоне! Слон, оказывается, представлял для древнего европейского естествоиспытателя куда большую диковину, чем подводник!

Риторика требовала «описывать непонятное через знакомое», и Аристотель дает объяснения хоботу неведомого слона через терминологию подводников: «слон переходит реку под водой благодаря задранному над поверхностью хоботу, через который, как к водолазу, поступает воздух».

Это означает, что подводные работы являлись для древних чем-то обыденным. Они были менее удивительными, чем слон. Вероятно, многие документы утеряны, иначе исследователям пришлось меньше ломать голову, например, над тем, что за «спецназ» смог во время войны Афин с Сиракузами (еще до Архимеда) перепилить «противокорабельное» подводное ограждение из толстых бревен.

Пилить под поверхностью моря ─ не раковины с жемчугом поднимать, труд тяжелый, без подачи воздуха не обойтись.

Сохранились данные о гигантской перевернутой коробке из стекла, в которой Александр Македонский исследовал дно. Этот «проект» можно считать прообразом батискафа или подлодки античности.

В записях об этом факте есть упоминания, что колокол Македонского освещался изнутри. Электричества не знали, освещать могли только факелами, масляными лампами или свечами. Значит, Великий Александр сам себе злобно сократил время пребывания на дне ради «понтов», не учтя того, что реакция горения уменьшит запасы кислорода.

Когда появились первые подлодки

Существует туманное свидетельство о недошедшем до нас эпосе 1190 года «Салман и Моролф», в котором главный герой перемещался под водой в подлодке из драккара с плотно закрытой водонепроницаемой кожей палубой. Но первые достоверные сведения о продолжении штурма человеком подводного мира относятся к началу XVI века.

Гениальность и покровительство Римских Пап (особенно Борджиа) позволили Леонардо да Винчи изобретать новое и усовершенствовать старое.

Механизмы, схемы которых он находил в папских архивах, возможно, не были воплощены, но давали полет творческой мысли гению. Первый достоверный чертеж подлодки на мускульной тяге принадлежит именно великому Леонардо.

После него, история развития штурма глубин человеком ускоряется:

  • 1538 год ─ морская супердержава Испания проводит испытания подводного колокола при императоре Карле V;
  • 1620 (ориентировочно) год ─ механик Корнелиус Дреббель с королём Иаковым I проводят первый запуск весельной подлодки с экипажем из 15 человек;
  • 1716 год ─ исследователь космоса Галлей изобретает подачу кислорода в водолазный колокол.

Его изобретение позже было усовершенствованно системой насосов. Появление относительно автономной боевой подводной лодки, казалось, вот-вот состоится.

Первая боевая подлодка

Но прошло полтора столетия, полных неудач (несостоявшийся проект Никонова в 1720) и трагедий (утонувшая с изобретателем субмарина англичанина Дэя в 1770), прежде чем очередная война вновь подтолкнула человеческую мысль к созданию подводных лодок.

1776 год: американец Дэвид Бушнелл изобрел свою знаменитую подлодку «Черепаха», а его компаньон Эзра Ли предпринял первую в мире попытку подводной минной атаки на вражеский (английский) флот в гавани Нью-Йорка. С боевой задачей субмарине справиться не удалось, но именно в «Черепахе» оказались заложены основные технологические заделы, которые развивались в конструкциях будущего:

  • боевая рубка;
  • цистерна с балластом;
  • винтовой двигатель на корме;
  • манометр для определения глубины погружения субмарины.

Кроме изобретения субмарины, Бушнелл сделал и другое открытие: доказал, что порох способен взрываться даже под водой. Из-за слабости порохового заряда ─ для настоящих мин требовалась взрывчатка мощнее, ─ первая «минная война» закончилась поражением подлодок.

После потери первой субмарины, подводные атаки людей упрямца Бушнелла (сам конструктор не рисковал) продолжались до 1778 года. Мины с первой подлодки ничего не могли сделать с медной обшивкой деревянных судов, плохо было и с точностью. В итоге «Черепахе» удалось случайно (вместо фрегата) потопить баржу.

Сразу после Бушнелла во Франции проектируется подводная лодка с резервуарами для воздуха с двумя движущими винтами (для движения по горизонтали и вертикали).

Впервые предусматривалось наличие на борту запаса воздуха. Современниками конструкция была оценена как «слишком сложная» (хотя винты вращались мускульной силой экипажа) и проект не состоялся.

  • 1800 ─ Фултон создает цельнометаллический (с медным корпусом) «Наутилус»;
  • 1810 ─ субмарина на мышечной тяге от братьев Кёссан;
  • 1834 ─ конструкция подлодки генерала Шильдера, вооружённая мортирой (сведений не сохранилось);
  • 1860-ые ─ проекты Александрова, Спиридонова, тип движения ─ «реактивный», за счет выбрасывания сжатого воздуха из размещенных на борту газгольдеров;
  • 1861 ─ американский француз Вильруа строит подводное «судно-сигару» «Аллигатор» в Филадельфии. Проект послужил прототипом для субмарины конфедерата ХорусаХанли, добавившего к конструкции балластные цистерны как в проекте Бушнелла;
  • 1864 ─ первое успешное боевое применение подлодки: лейтенант конфедератов Диксон, используя мину, прикрепленную на шесте к носу субмарины конструкции «Ханли-Вильруа» топит флагман блокирующей Чарльстон эскадры янки. Подлодка гибнет вместе с экипажем;
  • 1879 ─ первый в мире проект подводного судна на электрическом ходу проекта С. Джавецкого с аккумуляторными батареями.

Хронологически, первая боевая подлодка ─ «Черепаха», а по реальному результату ─ «Аллигатор» лейтенанта конфедератов Диксона конструкции Х. Ханли.

С началом первой Мировой субмарины становятся грозным оружием воюющих сторон. Особо бурное развитие подводный флот получил во время II Мировой и в разгар Холодной.

При появлении атомных реакторов автономность подводных лодок возрастает многократно. В одной из песен В. Высоцкого есть слова: «мы можем по году плевать на погоду». В том смысле, что субмарина может год не всплывать на поверхность. Возрастает и мощность вооружения, превращая подлодки в могучий инструмент ядерного апокалипсиса.

Основные конструктивные особенности современной подводной лодки

Со времен Фултона корпуса подлодок строят цельнометаллическими. Сегодня субмарины проектируются обычно с двойным корпусом. Интересный факт: самые современные американские однокорпусные подлодки «X-Craft» эксплуатируют конструкторские идеи еще С. Джевецкого. Но большинство субмарин имеет два корпуса:

  • «прочный» корпус, способный выдерживать огромное забортное давление;
  • «легкий» водопроницаемый корпус, формирующий оптимальные «аэродинамические» качества подводного судна (у подводников принят термин «обтекаемость»).

На изготовление прочного корпуса во всех странах идёт легированная сталь. В Советском Союзе эти корпуса делались из титана. Этот металл, помимо повышенной (по сравнению со сталью) прочностью, обладал большей магнитной проницаемостью. Титановые субмарины сложней обнаружить одним из основных видов поиска: магнитометрическим. Титановые АПЛ ставили рекорды по глубине погружения.

К сожалению, выяснилось, что титан теряет прочность при горячей сварке. На время проект титановых корпусов для АПЛ был отложен.

При Ельцине петербургский ВНИИЭСО (под минимальным руководством киевского Института Сварки Паттона) закончил работу своими силами в лаборатории С. Картавого и Д. Кулагина, исключительно на голом энтузиазме (в 1992-1997 годах ВНИИЭСО выживал без финансирования) создал прибор для холодной сварки титановых плит.

К несчастью, по моде времени, изобретение было выкуплено торговой фирмой-спонсором, не дававшей учёным умереть от голода. Судьба прибора сегодня авторам статьи неизвестна, хотя лаборатория С. Картавого продолжает работы.

На однокорпусной субмарине прочным корпусом укрыто всё, кроме надстройки и ограждения рубки, даже балластные цистерны.

В двухкорпусных АПЛ часть цистерн с балластом ранее размещалась между прочным и лёгким корпусами, но из-за ряда катастроф ЦГБ (цистерны главного балласта) теперь полностью защищены твердым корпусом.

Существуют многокорпусные типы ПЛ: голландский «Дольфейн» имеет три, а советско-российский «проект 941» ─ два прочных корпуса.

Кроме титана и легированной стали, перспективными материалами корпусов ─ особенно для малых подлодок ─ являются композитные материалы:

  • стеклопластик;
  • углепластик.

Сверхмалые подводные суда с современными двигателями, корпусами из композитов являются stealth-субмаринами, так как обнаружение их акустическим или магнитометрическим способом сильно затруднено.

Двигатели подлодок

При словах «современная подлодка» чаще представляется могучая АПЛ с ядерным реактором. На практике, наибольшее число субмарин относится к дизельным.

Ядерный реактор и дизель для подлодки имеют свои недостатки.

Им требуется довольно много места, что для субмарины критично. Дизельная подводная лодка должна ежесуточно всплывать, обычно это происходит ночью, для скрытности. К дизелю присоединен генератор, который пополняет электроэнергией разряженные за дневной переход аккумуляторы.

Ядерный реактор нагревает воду, вода превращается в пар, который поступает на парогенератор. Он уже вращает водометный движитель или винт, а так же электрогенератор для обеспечения энергией лодки. Но тепловой след при этом огромный. Поэтому субмарину современным тепловизорам легко обнаружить, особенно на небольших глубинах.

Поэтому будущее за развитием ПЛ с новейшими «альтернативными» типами двигателей. Они не такие шумные, как дизельные, занимают меньше места на субмарине. Двигателем Стирлинга, например, оснащены новейшие подлодки Швеции с Японией (тип «Готланд», тип «Сорю»), а водородным двигателем ─ почти все АПЛ Германии (тип U-212). Именно подводными судами этого типа сейчас вооружаются Израиль, Корея, Италия.

Интересны американские разработки твердооксидных двигателей для ПЛ, начавшиеся в 2006 году.

Японцы тоже экспериментируют с новыми типами энергии для двигателей подводных судов.

Подводный воздух

Вторым по значимости после энергетической установки на подлодке является сжатый воздух. Им продуваются цистерны с балластной водой, выстреливаются торпеды. Именно запасы воздуха на субмарине ограничивают время движения в подводном положении.

На субмаринах воздух содержится в трех системах:

  • основной, высокого давления (ВВД) ─ под давлением от 193 до 400 атмосфер;
  • среднего давления (в районе от 30 до 6 атмосфер);
  • низкого давления (менее 6 атмосфер).

Пока подводные суда не способны существовать без запасов воздуха, сжатого под высоким давлением. На современных субмаринах существуют системы получения воздуха из морской воды, но они не настолько совершенны, чтобы полностью заменить запасы ВВД. Запасы можно пополнять при всплытии, но тогда нарушается режим скрытности подлодки.

Поэтому ведётся жесткий контроль запасов ВВД на борту субмарины, рационирования и циркуляции воздуха. Баланс кислорода внутри лодки восстанавливается специальными устройствами. Подсчитано, что в конце похода современной АПЛ, подводники дышат воздухом, восстановленным более 150 раз. Системе регенерации воздуха на субмаринах уделяется особое внимание, технологии там почти космические.

Погружение и всплытие современных подлодок

Начиная с «Черепахи» (при неизбежных отклонениях конструкторской мысли в ту или иную сторону), погружение и всплытие подлодок производится при помощи цистерн с балластом. ЦГБ размещаются на корме, носу и посередине подлодки. Дополнительные цистерны размещают в лёгком корпусе и используются, как правило, для устранения дифферента и крена судна.

При погружении подлодки балластом (забортной водой) заполняются сначала концевые цистерны, затем, после проверки на герметичность, цистерны средней группы.

При всплытии расположенные посередине корпуса ЦГБ продуваются сжатым воздухом из систем ВВД первыми. Плавучесть повышается и лодка всплывает.

Помимо систем ЦГБ подлодке помогают сохранять устойчивость:

  • цистерны вспомогательного балласта (для устранения дифферента);
  • торпедные цистерны (куда сливают воду из пусковой установки после выстрела, чтоб избежать «танца» субмарины);
  • цистерны кольцевого зазора.

Несмотря на эту сложную систему дифферентных систем, даже современная АПЛ может повести себя после залпа непредсказуемо.

Система наблюдения и обнаружения противника на подлодке

Способность субмарины выполнить боевой приказ скрытно от сил противолодочной обороны врага является её главным оружием. Несмотря на новые типы корпусов, новые двигатели главными способами обнаружения противника остаются:

  • гидроакустический;
  • магнитометрический.

На большинстве современных боевых ПЛ работают как акустический, так и магнитометрические посты.

В боевых условиях магнитометры устанавливаются на самолётах или противолодочных вертолётах.

Главным достоинством магнитометрического метода являются его простота и незаметность: как и пассивное гидроакустическое наблюдение, такой пост практически невозможно обнаружить.

Для современных подлодок основными боевыми задачами являются:

  • уклонение от районов наземного (воздушного) противолодочного наблюдения;
  • уклонение при обнаружении вражеской ПЛ (расписанные в романах бои между подводными флотами не считаются приоритетной задачей подлодок).

Но скрытность, малозаметность для всех систем обнаружения ─ остаются важнейшим оружием субмарин.

Современное вооружение

Древнейшим и изначальным оружием субмарин были мины и торпеды. Затем к ним добавились ракеты. Типы вооружения новейших подлодок разделяются на:

  • ракетное баллистическое;
  • ракетное (крылатые ракеты);
  • многоцелевое (ракеты, мины и торпеды в случае малых ПЛ, торпеды, ракеты крылатые и баллистические ─ в случае субмарин «тяжелых» классов);
  • торпедное;
  • ракетно-торпедное.

Военные доктрины ряда стран делали упор на развитие флота многоцелевых подлодок (ПЛАТ), но сегодняшняя военная мысль считает, что необходимо «разделение труда» между различными типами субмарин.

Классификация подлодок

Выше по тексту приведена классификация подводных боевых субмарин по типам вооружения, по количеству корпусов и типу движителя, остается привести современную классификацию подлодок по тоннажу и военному предназначению.

По тоннажу субмарины делятся на:

  • крейсерские;
  • большие;
  • средние;
  • малые;
  • сверхмалые.
    • Отдельным, «высшим классом» подлодки следует считать тип «подводный крейсер», идея которого появилась еще в Германии во время I мировой (U-139). Сущность идеи заключалась в длительном автономном военном походе субмарины.

      Первые подводные крейсеры 1917-1918 г.г., вроде почтового подводного судна «Дойчланд» или боевого проекта U-139 (1918) имели дальность хода в 12 с половиной тысяч миль, помимо торпед вооружались артиллерией.

      Правда, свой долгий путь субмарина проделывала большей частью в надводном положении.

      Современный подводный крейсер

      По классификации российских подводников, ракетные АПЛ (подводные крейсеры) делятся на:

  • крейсеры (с крылатыми ракетами);
  • тяжелые крейсеры (с баллистическими ракетами на которые можно установить ядерную боеголовку).

  • выброска диверсионных групп (малые и сверхмалые субмарины);
  • связь и ретрансляция приказов командования в любой точке мира (большие и средние дизельные подлодки);
  • разведка (как непосредственная, так и в системе общей командной электронной сети);
  • уничтожение надводных (приоритет), подлодок врага;
  • постановка минных полей, заграждений (обычно ─ в составе «завесы» эскадры дизельных субмарин);
  • уничтожения наземных объектов враждебной стороны (это уже дело АПЛ-крейсеров).
    • Помимо перечисленного, на подлодках будет лежать ответственность за удар ядерный возмездия.

      Подлодки в мирной жизни

      В 1914 году была построена первая в мире «мирная» подводная лодка ─ германская «Лолиго». Сегодня субмарины на гражданской службе преимущественно используются в целях науки наряду с батискафами. Также они используются в мирных целях в качестве:

  • транспортов ─ в 90-ые хотели переоборудовать ВСЕ российские субмарины класса ТРПКСН да не хватило средств;
  • подводных судов связи;
  • туристических субмарин для подводных круизов (французская подлодка «Огюст Пикар» на Женевском озере, финская «круизная» субмарина «Золотой Таймень» для подводного сафари в теплых морях, а также русский экскурсионный проект «Садко»).
    • В странах, где олигархам нечего стесняться, растёт флот частных подводных судов, а сверхмалые субмарины из композитных материалов частенько используются преступными синдикатами.

      Видео

К началу 70-х годов главные участники ядерной гонки СССР и США вполне обоснованно сделали ставку на развитие атомного подводного флота, оснащенного межконтинентальными баллистическими ракетами. В результате этого противостояния на свет появилась самая большая в мире подводная лодка.

Противоборствующие стороны приступили к созданию атомных тяжелых ракетных крейсеров. Американский проект – АПЛ типа «Огайо» предполагал размещение 24 межконтинентальных баллистических ракет. Нашим ответом стала подводная лодка проекта 941, условно названная «Акула», известная больше как «Тайфун».

История создания

Выдающийся советский конструктор С. Н. Ковалев

Разработка Проекта 941 была поручена коллективу ленинградского ЦКБМТ «Рубин», которым бессменно несколько десятилетий подряд руководил выдающийся советский конструктор Сергей Никитович Ковалев. Строительство лодок осуществлялось на северодвинском предприятии «Севмаш». Во всех отношениях это был один самых грандиозных советских военных проектов, до сих потрясающих своими масштабами.


Своим вторым названием — «Тайфун» «Акула» обязана генсеку ЦК КПСС Л. И. Брежневу. Именно так он представил ее делегатам очередного съезда партии и всему остальному миру в 1981 году, что в полной мере отвечало ее всесокрушающему потенциалу.

Компоновка и размеры


Особого внимания заслуживают размеры и компоновка ядерного подводного исполина. Под оболочкой легкого корпуса находился не совсем обычный «катамаран» из 2-х прочных корпусов, расположенных параллельно. Для торпедного отсека и центрального поста с примыкающим к нему отсеком радиотехнического вооружения были созданы герметичные отсеки капсульного типа.


Все 19 отсеков лодки сообщались между собой. Горизонтальные складывающиеся рули «Акулы» располагались в носовой части лодки. На случай всплытия ее из-подо льда было предусмотрено значительное усиление боевой рубки округлой крышкой и специальными подкреплениями.


«Акула» поражает своими исполинскими размерами. Не зря она считается самой большой подводной лодкой в мире: ее длина — почти 173 метра соответствует двум футбольным полям. Что касается подводного водоизмещения, то здесь также не обошлось без рекорда – около 50 тыс. тонн, что почти втрое превышает соответствующую характеристику американской «Огайо».

Характеристики

Подводная скорость у главных конкурентов была одинаковой – 25 узлов (чуть более 43 км/ч). Советская ядерная могла нести дежурство в автономном режиме в течение полугода, погружаясь на 400-м глубину и, имея в резерве дополнительно 100 метров.
Сравнительные данные по современным РПЛ СН
Проект 941 Ohio Проект 667БДРМ Vanguard Triomphant Проект 955
Страна Россия США Россия Великобритания Франция Россия
Годы постройки 1976-1989 1976-1997 1981-1992 1986-2001 1989-2009 1996-н.в.
Построено 6 18 7 4 4 2
Водоизмещение, т
надводное
подводное

23200
48000

16746
18750

11740
18200

12640
14335

14720
24000
Число ракет 20 Р-39 24 Trident 16 Р-29РМУ2 16 Trident 16 M45 16 Булава
Забрасываемый вес, кг 2550 2800 2800 2800 н.д. 1150
Дальность, км 8250 7400-11000 8300-11547 7400-11000 6000 8000

Чтобы привести в движение этого монстра, его оснастили двумя 190-мегаваттными ядерными реакторами, которые приводили в действие две турбины мощностью около 50 тыс. л.с. Двигалась лодка, благодаря двум 7-лопастным гребным винтам диаметром более 5,5 метров.

«Экипаж машины боевой» состоял из 160 человек, более трети которого – офицеры. Создатели «Акулы» проявили поистине отеческую заботу о бытовых условиях экипажа. Для офицеров были предусмотрены 2-х и 4-х местные каюты. Матросы и старшины располагались в маломестных кубриках с умывальниками и телевизорами. Во все жилые помещения подавался кондиционированный воздух. В свободное от вахты время члены экипажа могли посетить бассейн, сауну, спортзал или отдохнуть в «живом» уголке.

Боевой потенциал


В случае ядерного конфликта «Тайфун» могла обрушить на врага одновременно 20 ядерных ракет Р-39, с десятью 200-кт разделяющимися боеголовками каждая. Такой ядерный «тайфун» мог бы за считанные минуты превратить в пустыню все восточное побережье США.

Кроме баллистических ракет в арсенале лодки находились более двух десятков обычных и реактивных торпед, а также ПЗРК «Игла». Специально для оснащения «Тайфунов» ракетами и торпедами был разработан транспортный корабль «Александр Брыкин» водоизмещением 16 тыс. тонн и рассчитанный на перевозку 16 БРПЛ.

В строю

Всего за 13 лет с 1976 по 1989 со стапелей «Севмаша» сошло 6 АПЛ «Тайфун». Сегодня службу продолжают 3 единицы — две в резерве и одна — «Дмитрий Донской» используется в качестве основного объекта для испытаний нового ракетного комплекса «Булава».

9 сентября 1952 г. вышло подписанное И.В. Сталиным Постановление СМ СССР о создании атомной подводной лодки (ПЛА). Общее руководство научно-исследовательскими работами и работами по проектированию объекта возлагалось на ПГУ при СМ СССР (Б.Л. Ванников, А.П. Завенягин, И.В. Курчатов), а строительство и разработка корабельной части и вооружения - на Министерство судостроительной промышленности (В.А. Малышев, Б.Г. Чиликин). Научным руководителем работ по созданию комплексной ядерной энергетической установки (ЯЭУ) был назначен А.П. Александров, главным конструктором ЯЭУ – Н.А. Доллежаль, главным конструктором лодки - В.Н. Перегудов.

Для руководства работами и рассмотрения научных и конструкторских вопросов, связанных с постройкой подводной лодки, при Научно-техническом совете ПГУ была организована Секция № 8, которую возглавил В.А. Малышев. Выполнение основных работ по ЯЭУ наряду с Курчатовским институтом поручалось Лаборатории "В", а ее директор Д.И. Блохинцев был назначен заместителем научного руководителя. Постановлением Совмина на Лабораторию "В" было возложено выполнение расчетно-теоретических работ, разработка твэлов, сооружение и испытание опытного реактора подводной лодки.

Первой и важнейшей задачей стал выбор типа реактора в качестве основного источника энергии, а также общего облика энергетической установки. Сначала это были реакторы на графитовом и бериллиевом замедлителе с тепловыделяющими трубами, несущими давление, близкие по типу к строящейся тогда Первой АЭС. Несколько позднее возникли установки, у которых замедлителем была тяжелая вода. И только потом (а по тем темпам это был один месяц!) появился корпусной водо-водяной реактор.

Таким образом, уже с самого начала в Лаборатории «В» рассматривались два варианта ЯЭУ для подводных лодок: с водным теплоносителем и жидкометаллическим теплоносителем свинец-висмут. По инициативе А.И. Лейпунского работы по созданию транспортных ядерных установок были начаты в Лаборатории «В» еще в 1949 г.

К этому времени было известно, что в США ведутся работы по установкам двух типов: реакторы на тепловых нейтронах с водой под давлением и реакторы на промежуточных нейтронах с натриевым теплоносителем. Поэтому работы по созданию энергетических установок для атомных подводных лодок были развернуты в двух направлениях: водо-водяные реакторы и реакторы с жидкометаллическим теплоносителем.

Выбор эвтектического сплава свинец-висмут как теплоносителя для ядерных реакторов был сделан А.И. Лейпунским еще до начала развертывания работ в СССР по атомным подводным лодкам. Как вспоминает главный конструктор ЯЭУ Н.А. Доллежаль: «Этот вариант особенно поддерживал Д.И. Блохинцев , в то время директор Лаборатории «В» в Обнинске, где академик Александр Ильич Лейпунский работал над вопросами использования техники быстрых нейтронов. Его идея заключалась в том, что можно создать ядерную энергетическую установку для подводной лодки, в реакторе которой в качестве теплоносителя использовался бы жидкий металл (например, сплав свинца и висмута), и он мог нагреваться до достаточно высокой температуры без создания давления. А.И. Лейпунский был выдающимся ученым, и сомневаться в серьезности его предложений оснований не было».

Научным руководителем работ по созданию реакторов с жидкометаллическим теплоносителем был назначен А.И. Лейпунский , а после его смерти в 1972 г. – Б.Ф. Громов . Проекты серийных реакторных установок для подводных лодок разрабатывали ОКБ «Гидропресс» (г. Подольск) и ОКБМ (г. Нижний Новгород), а проекты самих кораблей – Санкт-Петербургское морское бюро машиностроения (СПМБМ) «Малахит».

В отличие от американцев, А.И. Лейпунский предложил и обосновал в качестве теплоносителя эвтектический сплав свинец-висмут, несмотря на его худшие теплофизические свойства в сравнении с натрием. Последующий опыт развития этих конкурирующих направлений подтвердил правильность выбора, сделанного им. (После нескольких аварий на наземном стенде-прототипе и опытной подлодке работы в США по этому направлению были прекращены.)

Одна из первых проблем возникла в самом начале работ при обосновании нейтронно-физических характеристик реактора с промежуточным спектром нейтронов, который формировался в активной зоне, из-за большой утечки нейтронов, обусловленной малыми размерами реактора и использованием бериллиевого замедлителя. А.И Лейпунский поставил перед В.А. Кузнецовым задачу создать критическую сборку, на которой можно было бы проверить методы и константы для расчета промежуточного реактора. Такая критсборка в 1954 г. была создана. Но 11 марта 1954 г., во время набора критмассы, произошел разгон реактора на мгновенных нейтронах. А.И. Лейпунский и все физики, занятые в эксперименте, были срочно госпитализированы в Москве.

Задача могла быть решена только при наличии крупномасштабных экспериментальных стендов, на которых оборудование отрабатывалось бы в условиях, близких к натурным. Поэтому в 1953 г. на базе Лаборатории «В» приступили к строительству полномасштабных стендов-прототипов ЯЭУ с водяным охлаждением (стенд 27/ВМ) и жидкометаллическим охлаждением (стенд 27/ВТ), которые были введены в эксплуатацию соответственно в 1956 и 1959 гг. Эти стенды представляли собой реакторные и турбинные отсеки атомных подводных лодок. На длительный срок они стали основной экспериментальной базой ФЭИ и Курчатовского института для отработки реакторов новых типов, равно как и базой Обнинского учебного центра ВМФ по подготовке экипажей подводных лодок.

Крейсерская атомная подводная лодка К-27 (проект 645)

Первая советская крейсерская атомная подводная лодка К-27 (проект 645) с ЯЭУ, охлаждаемой жидким металлом, в 1963 г. успешно прошла государственные испытания. В 1964 г. она совершила дальний поход в экваториальную Атлантику, во время которого (впервые в советском ВМФ) без всплытия в надводное положение прошла 12 278 миль за 1240 ходовых часов (51 сутки). Командиру лодки И.И. Гуляеву было присвоено звание Героя Советского Союза. Моряки дали высокую оценку ядерной энергетической установке. От Лаборатории "В" в этом уникальном походе участвовал один из создателей ЯЭУ, главный инженер стенда 27/ВТ К.И. Карих. В 1965 г. К-27 совершила второй поход, став первой советской атомной подводной лодкой, скрытно проникшей в Средиземное море.

В это время развернулось создание серии лодок второго поколения с ЯЭУ, использующей жидкометаллический теплоноситель свинец-висмут. В начале 1960-х годов в связи с созданием и выходом на боевое патрулирование в океан подводных ракетоносцев США, получивших название в западном мире «убийцы городов» (по типу выбора целей – их ракеты были нацелены на наши города), в СССР было принято решение о создании специальных противолодочных подводных лодок. Одним из пунктов программы стало задание на постройку малой скоростной автоматизированной лодки – истребителя подводных лодок, т.е. истребителя «убийц городов».

Проектирование атомной подводной лодки проекта 705 (советский шифр «Лира») началось после выхода Постановления ЦК КПСС и Совета Министров СССР летом 1960 г. Главная задача – создание высокоманевренной, скоростной, малого водоизмещения подводной лодки с ЯЭУ, с титановым корпусом, с резким сокращением численности экипажа, с внедрением новых образцов оружия и технических средств.

Важнейшим элементом паропроизводящей установки новой лодки был ядерный реактор с теплоносителем свинец-висмут, разработанный под научным руководством ФЭИ. Тяжелая биологическая защита и невысокие параметры пара ЯЭУ с водо-водяным реактором (на тот период) приводили к большому удельному весу реакторной установки. Новый реактор с жидкометаллическим теплоносителем позволял сократить водоизмещение, диаметр прочного корпуса и длину подводной лодки, увеличить скорость подводного хода. Благодаря этому принципиальнымотличием новой паропроизводящей установки являлись компактность, блочность компоновки, высокая степень автоматизации и маневренность, хорошие экономические и массогабаритные показатели.

Атомная подводная лодка проекта 705

Особое место в освоении реакторов со свинцово-висмутовым теплоносителем заняла проблема технологии этого теплоносителя. Под этим словосочетанием понимаются методы контроля и поддержания требуемого качества теплоносителя и чистоты первого контура в ходе эксплуатации реакторной установки. Важность этой проблемы была осознана после аварии реактора на лодке К-27 в мае 1968 года. Соответствующие методы и устройства поддержания качества теплоносителя были разработаны, когда завершалось строительство запланированной серии ПЛА проектов 705 и 705К.

Первая крейсерская подводная лодка нового типа К-64 в декабре 1971 года была принята в опытную эксплуатацию. И хотя в составе флота несли боевую службу только шесть кораблей этого типа, появление в океане новой советской противолодочной субмарины наделало много шума и стало для ВМС США неприятной неожиданностью. Американские подводные стратегические ракетоносцы были поставлены в трудное тактическое положение. Малые размеры подводных лодок проекта 705, значительный диапазон глубины погружения, высокая скорость полного хода позволяли ей осуществлять маневрирование на максимальной скорости, невозможное для всех других типов подводных лодок, и даже уходить от противолодочных торпед. Корабли этого проекта за свои скоростные и маневренные качества были занесены в «Книгу рекордов Гиннеса».

«Сейчас, оглядываясь назад, - пишет главный конструктор СПМБМ «Малахит» (где разрабатывался проект лодки) Р.А. Шмаков, - следует признать, что эта лодка была проектом XXI века. Она обогнала свое время на несколько десятилетий. Поэтому не удивительно, что для многих специалистов, испытателей, личного состава ВМФ она оказалась слишком трудной в освоении и эксплуатации».

«Идея создания такой лодки, какой стала ПЛА проекта 705, - отмечает заместитель главного конструктора проекта Б.В. Григорьев, - могла реализоваться только в 1960‑х годах, когда советское общество находилось на подъеме, открывались новые направления научных исследований и разработок, а оборона страны была важнейшим государственным приоритетом.» «Атомная подводная лодка проекта 705, – по определению секретаря ЦК КПСС и министра обороны СССР Д.Ф. Устинова, – стала общенациональной задачей, стала попыткой осуществить рывок для достижения военно-технического превосходства над западным блоком».

Командиры и офицеры подводных лодок с реакторными установками, разработанными в ФЭИ, давали очень высокую оценку самой лодке и её ядерной энергетической установке, называя ее «чудо-лодкой», сильно опередившей своё время.

Сегодня можно считать общепризнанным, что в ФЭИ под руководством А.И. Лейпунского заложены основы нового направления ядерной энергетики, а также в промышленном масштабе продемонстрирована уникальная реакторная технология. Это позволило обеспечить компактность реакторной установки, что важно при создании подводных лодок ограниченного водоизмещения, обеспечить высокие маневренные качества, повысить надёжность и безопасность реакторной установки.

Большой вклад в развитие этого направления внесли А.А. Бакулевский, Б.Ф. Громов , К.И. Карих, В.А. Кузнецов, И.М. Курбатов, В.А. Малых , Г.И. Марчук , Д.М. Овечкин , Ю.И. Орлов, Д.В. Панкратов, Ю.А. Прохоров, В.Н. Степанов, В.И. Субботин , Г.И. Тошинский, А.П. Трифонов, В.В. Чекунов и многие другие.